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Abstract

Formulas for correlating morphological parameters in mixtures containing polydisperse hard particles are important for investigating the
relationships of the properties of these mixtures with morphological parameters. Two simple new formulas are derived, respectively for
relating the number averaged surface to surface or center to center interparticle distances between impenetrable particles with average
particle diameter, volume fraction of particles, particle spatial distribution parameter and dimensional number. The geometrical importance
of particle spatial distribution parameter is given. The two formulas are generally applicable to a system filled with hard particles obeying any
particle size distribution and occupying any lattice in one to three dimensions.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Mixtures consisting of continuous media and impene-
trable particles (i.e. spheres in three dimensions (3D),
disks in two dimensions (2D) and rods in one dimension
(1D)) are very common geometrical models applicable in
polymer science. It is no doubt that the geometrical features
of the mixtures influence the properties of polymeric mate-
rials. It has been widely reported that morphological para-
meters, i.e. average particle size, particle size distribution,
particle volume fraction, particle spatial distribution and
interparticle distance, have substantial influences on the
mechanical [1,2], electric [3,4] rheological [5] and colloidal
[6,7] properties of polymers in 3D. The interparticle
distance is a key parameter in dominating these properties.
The geometrical relation in 3D has also been simulated in
2D [8]. Microscopy photographs of multiphase polymer
systems have been commonly used to correlate morphol-
ogy–property relationship, which are basically 2D results.
The morphology–property relationships of thin polymer
films containing dispersed particles can be formulated as a
2D problem. The above morphological parameters, espe-
cially the interparticle distance, also impose great influences
on the electrical, UV–vis spectral and mechanical proper-
ties of these thin films [9]. The 1D problems deal with the

insulator–metal transition in conducting polymers [10,11],
chemical reaction on polymer chains [12], electron motion
on isolated polymer chains in solution [13], and so on. It is
obvious that the effects of morphological parameters are
interrelated. Therefore, the formulas for correlating
morphological parameters are crucial for investigating
morphology–property relationships to separate the effects
of morphological parameters from each other or from other
factors.

Two types of interparticle distances, i.e. center to center
interparticle distance and surface to surface interparticle
distance, can be distinguished. Formulas for calculating
the mean nearest-neighbor center to center interparticle
distance in a mixture containing randomly distributed
equal-sized particles in 1D to 3D have been derived [14–
21]. The polydispersity of particle size has a substantial
influence on the relation of morphological parameters. A
formula for calculating the mean nearest-neighbor surface
to surface interparticle distance in a mixture containing
polydisperse particles in 1D to 3D has also been derived
[22]. For the case of polydispersity, formula is, however,
quite complex, and no analytical equation has been given.
Other formulas for correlating morphological parameters
with respect to one or more neighbors were also suggested
[1,2,23–26]. A formula for calculating the number-average
surface to surface interparticle distances between particles
conforming to a log-normal distribution and occupying any
lattice (regular or random) in 3D has been derived [25,26].
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However, it cannot be applied to other mixtures containing
particles obeying other particle size distributions and having
lower dimensions.

In this work, we derive two simple new formulas for
correlating morphological parameters of systems containing
particles conforming to any other distributions (continuous
or discrete) and occupying any lattice, which is applicable to
1D to 3D systems. The relation between the new formula
and previous one for calculating the surface to surface inter-
particle distance and the nature of particle spatial distribu-
tion parameter are discussed.

2. Theory

There areN hard particles in aD dimensional box with an
edge length ofl, whereD is a positive integer among 1–3.
The particle size frequencyf(dm) is expressed as

f �dm� � nd;m

N
�1�

wherend,m is the number of hard particles with a diameter
dm.

The number average particle sizekdl is given by

kdl �

XMd

m�1

nd;mdm

N
�2�

The N particles are actually classified intoMd classes or
grades by size. Themth class containsnd,m particles with a

diameterdm. The relation amongN, Md andnd,m is

XMd

m�1

nd;m � N �3�

The volume fractionf of N particles filled in aD dimen-
sional box with a volumeV is

f �

XMd

m�1

p

2a

� �
nd;mdD

m

V
�4�

wherea is a constant. It is equal to 2/p, 2 and 3 forD �
1 2 3; respectively.

A lattice consists of a number of straight line segments
that connect the centers of particles. The dispersion state of
particles is fixed when their centers occupy a regular lattice
or random one. Even so, a connection of the centers of
particles is a combinatorial problem. In general, there is
no restriction on how a straight line segment is connected.
Therefore, for a given number and dispersion state of parti-
cles, different connections of the centers of particles give
different lattices. A lattice corresponds one-by-one to a
combination of these straight line segments. An example
of 2D lattice is shown in the upper part of Fig. 1. Disks
are randomly distributed on the paper plane of the present
page. There are a number of lattices for the number of disks
and dispersion state given in the upper part of Fig. 1. For
simplicity, Fig. 1 demonstrates only one of them.

On a lattice, the center to center interparticle distanceLk

between any two hard particles, respectively with diameters
di anddj is

Lk � Tk 1 1
2 �di 1 dj� �5�

where Tk is the surface to surface interparticle distance
between the two particles. It is obvious thatLk is also the
length of a straight line segment connecting the two hard
particles, respectively with the diametersdi and dj. The
quantities in Eq. (5) are also graphically illustrated in the
lower part of Fig. 1.

The total length of straight line segments connecting the
centers of particles on a lattice is given by the sum of Eq.
(5), which is

XNL

k�1

nL;kLk �
XNT

k�1

nT;kTk 1
1
2

XNd;1

i�1

nd;idi 1
XNd;2

j�1

nd;jdj

0@ 1A �6�

wherenX,Y is the number ofX of the same size, whereX �
L;T andd, andY � k; i andj. NX is the number of classes by
size.Y denotes theYth class.

On a lattice, one center-to-center interparticle distance
contains one surface-to-surface interparticle distance, as
shown in the lower part of Fig. 1. Therefore, the total
number of center-to-center interparticle distance equals
that of surface-to-surface interparticle distance on a lattice.
There is no restriction on how the total number of bothdi

and dj are assigned to the two terms of sum in Eq. (6),
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Fig. 1. Schematical illustrations of a lattice (consisting of straight line
segments connecting the centers of particles, pictured with dark lines),
particles (open circles) and quantities in Eq. (5) in 2D.



respectively. The total number ofdi anddj must be an even
number. Accordingly a possible way is to divide the total
number of bothdi anddj into two groups equally. These can
be quantitatively described by

XNL

k�1

nL;k �
XNT

k�1

nT;k �
XNd;1

i�1

nd;i �
XNd;2

j�1

nd;j �7�

In general, Eq. (7) is not equal toN. For instance, we
recall Fig. 1 to explain this. In this figure,N � 24 while
Eq. (7)� 36.

Then

XNL

k�1

nL;kLk

XNL

k�1

nL;k

�

XNT

k�1

nT;kTk

XNT

k�1

nT;k

1
1
2

XNd;1

i�1

nd;idi

XNd;1

i�1

nd;i

1

XNd;2

j�1

nd;jdj

XNd;2

j�1

nd;j

0BBBBBB@

1CCCCCCA �8�

For a given dispersion of heterogeneous-sized hard parti-
cles, the following relation exists

XNd;1

i�1

nd;idi

XNd;1

i�1

nd;i

�

XNd;2

j�1

nd;jdj

XNd;2

j�1

nd;j

� kdl �9�

only when Eqs. (10)–(12) are satisfied.

di � dj � dm �10�

nd;i � nd;j � qnd;m �11�

Md � Nd;1 � Nd;2 �12�
whereq is a positive constant and is determined by a lattice
connecting the centers of particles.

Eq. (10) implies that each of theN particles must be
connected to a lattice. Eq. (11) requires that the time by
which each of theN particles is linked to a lattice must be
identical.

We first discuss the geometrical significance ofqk gener-
ally, and then apply it to the specific case ofq in Eq. (11).
Because a straight line segment of center-to-center interpar-
ticle distance links two particles, either owns a half of the
straight line segment. Therefore, the total number of center-
to-center interparticle distance equals a half of the total time
by which N particles are linked to a lattice

XNL

k�1

nL;k � 1
2

XN
k�1

pk �13�

wherepk is the time by which thekth particle is linked to a
lattice. It equals 0, 1, 2, 3, 4, 5, and so on.

We now apply Eq. (13) to Fig. 1. The total number of
center-to-center interparticle distance in this figure has been
known to be 36. The total time of connections for the 24

particles is 4× 101 3 × 5 1 2 × 8 1 1 × 1� 72: The half
of 72 is 36. It is obvious that Eq. (13) is true for Fig. 1.

Let

qk � pk

2
�14�

Then

XNL

k�1

nL;k �
XN
k�1

qk �15�

Whenqk is a constantq (andpk is also a constantp), Eq. (15)
becomes

XNL

k�1

nL;k � qN �16�

Eq. (16) can also be derived by combining Eqs. (3), (7), (11)
and (12). Therefore, Eq. (14) gives the geometrical signifi-
cance ofqk or q. The constantq in Eq. (11) equalsp/2 for
each particle on a lattice conforming to Eqs. (10)–(12).

It has been known that there are a number of lattices for a
given dispersion state of particles. For equal-sized particles,
Eq. (9) is always satisfied, irrespective of the type of a
lattice. However, it is believed that only limited number
of lattices meet Eqs. (10)–(12) for heterogeneous-sized
particles. Moreover, the lattice determined by the nearest
neighbors may not satisfy Eq. (11). If Eqs. (10)–(12) are
not met, none of the last two terms on the right-hand side of
Eq. (8) is equal to the original number average particle size
evaluated by Eq. (2). That is why we have made a difference
amongdm, di anddj in Eqs. (2), (6) and (8).

If Eqs. (10)–(12) hold, then Eq. (8) is reduced to

kLl � kTl 1 kdl �17�
where

kLl �

XNL

k�1

nL;kLk

XNL

k�1

nL;k

�18�

kTl �

XNT

k�1

nT;kTk

XNT

k�1

nT;k

�19�

Because of the restrictions of Eqs. (10)–(12), Eq. (17) is not
universal though the type of a lattice does not affect its
validity for the mixture filled with equal-sized particles.

We construct a dispersion state by filling the aboveN hard
particles uniformly in the aboveD-dimensional box with an
edge length ofl, which means that the probability of finding
a particle within the box is identical. We then define a
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parameterj0 by

j0 � kL0l
l

XMd

m�1

nd;m

 ! 1
D

�20�

whereL0 is the actual number average center to center inter-
particle distance in the above box constructed.

Eq. (20) shows thatj0 is the ratio of the actual number
average center to center interparticle distance to the number
average point to point distance defined by a uniform disper-
sion (i.e. simple cubic lattice in 3D, square lattice in 2D and
the lattice with an equal distance between neighboring
points in 1D) when the number of particles equals that of
points. Points can be arranged without the restriction of
particle volumes since their volumes are zero. However,
this restriction exits for particles containing volumes. For
instance, one cannot rearrange randomly closely packed
spheres to occupy a cubic lattice due to the restriction of
particle volume. It is clear that the value of this parameter is
determined by the relative uniformity of particle dispersion.
So, it can be called a particle spatial distribution parameter.

Since

V � l D �21�
Combination of Eqs. (4), (20) and (21) yields

kL0l � j0
pkdDl
2af

� � 1
D �22�

where

kdDl �

XMd

m�1

nd;mdD
m

XMd

m�1

nd;m

�23�

Insertion of Eq. (22) into Eq. (17) gives

kT0l � j0
pkdDl
2af

� � 1
D

2kdl �24�

whereT0 is the number average center to center interparticle
distance in the above box constructed.

Comparing with a point, a particle of non-zero size has an
excluded volume. The volume where the probability of find-
ing a particle is zero is also called an excluded volumeVEV,
as illustrated in previous work [24,26]. The systems contain-
ing such an excluded volume have been found in polymer
blends and composites in 3D [3,4,24].

The excluded volume fractionfEV for a mixture contain-
ing a continuous media, particles and an excluded volume is
given by

fEV � VEV

V
�25�

We construct another mixture containing a continuous
media and particles without an excluded volume. Eq. (22)

is applicable to the resultant system. However, the particle
volume fractionF for the resultant system is converted by
[24,26]

F � f

1 2 fEV
�26�

Then

kLEVl � j0
pkdDl�1 2 fEV�

2af

� � 1
D �27�

wherekLEVl is the number average center to center inter-
particle distance in a system containing an excluded
volume.

We define

jEV � �1 2 fEV�
1
D �28�

Inserting Eq. (28) into Eq. (27) we get

kLEVl � j0jEV
pkdDl
2af

 ! 1
D

�29�

Whenj0, dD, f , D anda are fixed, dividing Eq. (29) by Eq.
(22), we obtain

jEV � kLEVl
kL0l

�30�

Eq. (30) gives the geometrical importance ofjEV. It is a ratio
of the number average center to center interparticle distance
in a system containing an excluded volume to that in a
system without an excluded volume whenj0, dD, f , D
anda are identical. ClearlyjEV also characterizes the rela-
tive uniformity of particle dispersion. So, it is also called a
particle spatial distribution parameter.

Inserting Eq. (29) into Eq. (17) we have

kTEVl � j0jEV
pkdDl
2af

 ! 1
D

2kdl �31�

Eq. (28) indicates that 0, jEV # 1: Therefore, interparticle
distances that are calculated from Eqs. (29) and (31) are
reduced when a mixture contains an excluded volume.

Let j be

j � j0jEV �32�
Combining Eqs. (20), (30) and (32) we get

j � kLEVl
l

XMd

m�1

nd;m

 ! 1
D

�33�

Eq. (33) defines the geometrical meaning of the parameter
of j . It is a ratio of the actual number average center to
center interparticle distance to the number average point
to point distance defined by a uniform dispersion when
the number of particles equals that of points. Accordingly
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it is a particle spatial distribution parameter. ForfEV � 0

j � j0 �34�
Therefore, the generalized formulas, respectively, for eval-
uatingkLl andkTl are

kLl � j
pkdDl
2af

 ! 1
D

�35�

kTl � j
pkdDl
2af

� � 1
D

2kdl �36�

3. Discussion

When the particle sizes fit a log-normal distribution in
3D, Eq. (1) becomes [27]

f �di� � 1����
2p
p

ln s
exp

�ln di 2 ln d�2
2 ln 2s

" #
�37�

whered is the particle size at a probability of 50%,s is the
particle size distribution parameter.

Thenkdl andkd3l are given, respectively, by [27]

kdl �

XMd

m�1

nmdm

XMd

m�1

nm

� exp�ln d 1 0:5 ln 2s� �38�

kd3l �

XMd

i�1

n3;id
3
i

XMd

i�1

n3;i

� exp�3 ln d 1 4:5 ln 2s� �39�

Inserting Eqs. (34) and (35) into Eq. (32), and settingD � 3
anda � 3; we obtain

kTl � d j
p

6f

� � 1
3

exp�1:5 ln 2s�2 exp�0:5 ln 2s�
24 35 �40�

Eq. (40) is the same as that we derived previously [23–26].
In a previous paper [26], we suggested the concepts of
absolute or relative particle spatial distribution parameters.
A relative particle spatial distribution parameter is defined
by a ratio of one center-to-center interparticle distance to
another. An absolute particle spatial distribution parameter
is not a ratio but a pure number. However, in this work, we
have demonstrated that the values of all particle spatial
distribution parameters are relative. Therefore, it is not
necessary to define absolute or relative particle spatial
distribution parameters.

Typical j0 values for particles, respectively occupying
the simple cubic lattice in 3D, square lattice in 2D and the
lattice with an equal distance between neighboring centers

in 1D, are one. Some other values of particle spatial distri-
bution parameter in 3D were also given in Ref. [26]. It must
be pointed out that those values corresponding to lattices
that meet Eqs. (10)–(12) are accurate. However, the value
of particle spatial distribution parameter for actual random
loose packing of particles has not been resolved. Computer
simulation may be useful for calculating it.

Clearly a lower limit onf for using Eqs, (35) and (36) is
f . 0: An upper limit isf # fmax; wherefmax is the high-
est volume fraction of particles in close packing and is
determined by the particle polydispersity. For instance,
fmax� 0:72 for equal-sized spheres and is greater than
0.72 when sphere sizes are polydisperse in 3D [28].

4. Conclusions

The number average center to center or surface to surface
interparticle distances�kLl andkTl� are related, respectively,
by Eqs. (35) and (36) with number average particle sizes
�kdl andkdDl�; particle volume fraction (f ), particle spatial
distribution parameter (j), dimensional number (D) and a
constant (a) determined byD. The two formulas are applic-
able to mixtures containing particles obeying any particle
size distribution and occupying any lattice forD � 1; 2 and
3. The lower and upper limits onf are 0, f # fmax;

wherefmax is the highest volume fraction of particles in
close packing and is determined by the particle polydisper-
sity. The equation derived in our previous work [23–26] is
only a specific example of this work.

The geometric meanings of particle spatial distribution
parameters (j0 and j ) are the ratio of the actual number
average center to center interparticle distance to point to
point distance determined by a uniform dispersion when
the number of particles equals that of points. When a
mixture contains the excluded volume, the appropriate
particle spatial distribution parameter�0 , jEV # 1� is,
however, the ratio of the number average center to center
interparticle distance in a system containing the excluded
volume to that in a system without the excluded volume
when j0, dD, f , D and a are identical. Therefore, there
does not exist an absolute particle spatial distribution para-
meter that has been suggested in our previous work [26].
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